Jumat, 02 September 2011

ALJABAR LINEAR

ALJABAR LINEAR

Kode/bobot/Semester : KI091301/ 3 sks / 1






Aljabar linear merupakan salah satu mata kuliah yang akan didapatkan pada semester 1 di jurusan TC ITS, sebenarnya apasih aljabar linear itu? Ini dia pengertiannya :
Aljabar linear adalah bidang studi matematika yang mempelajari sistem persamaan linear dan solusinya, vektor, serta transformasi linear. Matriks dan operasinya juga merupakan hal yang berkaitan erat dengan bidang aljabar linear.

Nah itulah apa yang disebut aljabar linear, adapun pokok bahasan yang terdapat didalamnya adalah :

ü  Sistem persamaan linier dan matrix
ü  Determinan
ü  Vektor pada ruang 2 dan ruang 3
ü  Ruang vektor Euclidean
ü  Ruang vektor
ü  Ruang inner product
ü  Eigenvalue dan eigenvektor
ü  Transformasi linier lanjut
ü  Aplikasi aljabar linier

Dan tujuan pembelajaran serta kompetensi yang diminta bagi para mahasiswa dalam mata kuliah ini adalah :

Tujuan Pembelajaran
Mahasiswa mampu memahami konsep aljabar linier dan memilih metoda
yang tepat untuk menyelesaikan berbagai persoalan aljabar linier

Kompetensi:
1. Mahasiswa mampu menyelesaikan masalah sistem persamaan linier
menggunakan komputasi matriks
2. Mahasiswa mampu menjelaskan ruang vektor dan aplikasinya dalam
transformasi linier
3. Mahasiswa mampu mengaplikasikan aljabar linier dalam beberapa contoh
kasus


Inilah sedikit gambaran tentang alajabar liniar yang saya kutip dari http://id.wikipedia.org/wiki/Aljabar_linear :

Persamaan Linear & Matriks


Persamaan linear dapat dinyatakan sebagai matriks. Misalnya persamaan:
3x1 + 4x2 − 2 x3 = 5
x1 − 5x2 + 2x3 = 7
2x1 + x2 − 3x3 = 9
dapat dinyatakan dalam matriks teraugmentasi sebagai berikut
Penyelesaian persamaan linier dalam bentuk matriks dapat dilakukan melalui beberapa cara, yaitu dengan eliminasi Gauss atau dapat juga dengan cara eliminasi Gauss-Jordan. Namun, suatu sistem persamaan linier dapat diselesaikan dengan eliminasi Gauss untuk mengubah bentuk matriks teraugmentasi ke dalam bentuk eselon-baris tanpa menyederhanakannya. Cara ini disebut dengan substitusi balik.
Sebuah sistem persamaan linier dapat dikatakan homogen apabila mempunyai bentuk :
a11x1 + a12x2 + ... + a1nxn = 0
a21x1 + a22x2 + ... + a2nxn = 0
am1x1 + am2x2 + ... + amnxn = 0
Setiap sistem persamaan linier yang homogen bersifat adalah tetap apabila semua sistem mepunyai x1 = 0 , x2 = 0 , ... , xn = 0 sebagai penyelesaian. Penyelesaian ini disebut solusi trivial. Apabila mempunyai penyelesaian yang lain maka disebut solusi nontrivial.

Penyelesaian Persamaan Linear dengan Matriks

Bentuk Eselon-baris

Matriks dapat dikatakan Eselon-baris apabila memenuhi persyaratan berikut :
1.) Di setiap baris, angka pertama selain 0 harus 1 (leading 1).
2.) Jika ada baris yang semua elemennya nol, maka harus dikelompokkan di baris akhir dari matriks.
3.) Jika ada baris yang leading 1 maka leading 1 di bawahnya, angka 1-nya harus berada lebih kanan dari leading 1 di atasnya.
4.) Jika kolom yang memiliki leading 1 angka selain 1 adalah nol maka matriks tersebut disebut Eselon-baris tereduksi
Contoh: syarat 1: baris pertama disebut dengan leading 1
syarat 2: baris ke-3 dan ke-4 memenuhi syarat 2
syarat 3: baris pertama dan ke-2 memenuhi syarat 3
syarat 4: matriks dibawah ini memenuhi syarat ke 4 dan disebut Eselon-baris tereduksi

Operasi Eliminasi Gauss

Eliminasi Gauss adalah suatu cara mengoperasikan nilai-nilai di dalam matriks sehingga menjadi matriks yang lebih sederhana (ditemukan oleh Carl Friedrich Gauss). Caranya adalah dengan melakukan operasi baris sehingga matriks tersebut menjadi matriks yang Eselon-baris. Ini dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris, lakukan substitusi balik untuk mendapatkan nilai dari variabel-variabel tersebut.

Operasi Eliminasi Gauss-Jordan

Eliminasi Gauss-Jordan adalah pengembangan dari eliminasi Gauss yang hasilnya lebih sederhana. Caranya adalah dengan meneruskan operasi baris dari eliminasi Gauss sehingga menghasilkan matriks yang Eselon-baris tereduksi. Ini juga dapat digunakan sebagai salah satu metode penyelesaian persamaan linear dengan menggunakan matriks. Caranya dengan mengubah persamaan linear tersebut ke dalam matriks teraugmentasi dan mengoperasikannya. Setelah menjadi matriks Eselon-baris tereduksi, maka langsung dapat ditentukan nilai dari variabel-variabelnya tanpa substitusi balik.
JIka A dan B matriks bujur sangkar sedemikian rupa sehingga A B = B A = I , maka B disebut balikan atau invers dari A dan dapat dituliskan B = A − 1 ( B sama dengan invers A ). Matriks B juga mempunyai invers yaitu A maka dapat dituliskan A = B − 1. Jika tidak ditemukan matriks B, maka A dikatakan matriks tunggal (singular). Jika matriks B dan C adalah invers dari A maka B = C.

Transpose Matriks

Yang dimaksud dengan Transpose dari suatu matriks adalah mengubah komponen-komponen dalam matriks, dari yang baris menjadi kolom, dan yang kolom di ubah menjadi baris.

Matriks Diagonal, Segitiga, dan Matriks Simetris

Matriks Diagonal
Sebuah matriks bujursangkar yang unsur-unsurnya berada di garis diagonal utama dari matriks bukan nol dan unsur lainnya adalah nol disebut dengan matriks diagonal
Matriks Segitiga
Matriks segitiga adalah matriks persegi yang di bawah atau di atas garis diagonal utama nol. Matriks segitiga bawah adalah matriks persegi yang di bawah garis diagonal utama nol. Matriks segitiga atas adalah matriks persegi yang di atas garis diagonal utama nol.
Matriks Simetris
Matriks kotak A disebut simetris jika A = AT

Determinan

Determinan adalah suatu fungsi tertentu yang menghubungkan suatu bilangan real dengan suatu matriks bujursangkar.

Kira-kira seperti itulah gambaran mata kuliah aljabar linear, untuk lebih lengkapnya silahkan cek di http://id.wikipedia.org/wiki/Aljabar_linear
GANBATTE!!!



Tidak ada komentar:

Poskan Komentar